Modelling and Validation of High-Current Surface-Mount Current-Sense Resistor

Josip Bačmaga¹, Raul Blečić¹, Renaud Gillon², Adrijan Barić¹

 1 University of Zagreb, Croatia Faculty of Electrical Engineering and Computing

²ON Semiconductor Oudenaarde, Belgium

22nd IEEE Workshop on Signal and Power Integrity (SPI) 2018

Measurement and Characterization – Session 8

Brest, France; 25 May 2018

This work was supported by the Croatian Science Foundation (HRZZ) within the project "Advanced design methodology for switching dc-dc converters".

Outline

- Introduction
- Measurement Procedure
- 3 Lumped-Element Model of the Current-Sense Resistor
- Validation of the Model
- Conclusion

Outline

- Introduction
- 2 Measurement Procedure
- 3 Lumped-Element Model of the Current-Sense Resistor
- Walidation of the Model
- Conclusion

Introduction

000

• High-frequency switching voltage regulators

- decrease of physical dimensions
- increase of AC power losses
- ⇒ precise current sensing to evaluate losses (inductor performance)
- Extracting the inductor current waveform $(i_L(t) = v_{sen}(t)/R_{sen})$:

• High-power $R_{sen} \Rightarrow$ large dimensions \Rightarrow parasitics \Rightarrow model

Motivation

Introduction

Main goal: make a very precise model of the current-sensing resistor used to evaluate losses in the inductor of the DC-DC converter and exact current up to several harmonics of the switching frequency where the skin effect losses are more pronounced.

Introduction

- Model extracted from *S*-parameter measurements
- Two-port shunt measurement method:

- ✓ low-impedance DUT not in the series to the impedance of the test fixture
- one port tied to ground (pad-ground capacitance shorted out)

- Measurement Procedure

Measurement Procedure

Device under test:

Introduction

- typical test case from family of high-power current-sense resistors.
- Ohmite FCSL150R050FER.
- nominal resistance: 50 mΩ.
- rated power: 10 W,
- $w \times I \times t = 15 \times 7.5 \times 1.1$ [mm].

Designed measurement structures:

- calibration structures for de-embedding test-fixture parasitics,
- two-port shunt characterization setup.

Conductor-backed coplanar waveguide, CBCPW ($Z_0 = 50 \Omega$):

- copper strip width: 1.26 mm, gap: 0.254 mm, thickness: 0.035 mm,
- FR4 substrate thickness: 1.5 mm.

Calibration Structures

Introduction

- "CBCPW through",
- 30-mm, 55-mm and 100-mm

Test fixture modelling:

- 1) S-parameters measured (after VNA calibration)
- 2) model of test fixture in ADS.
- parameters of connectors, interconnects and substrate optimized in ADS,
- 4) $\epsilon_r = 5.1$ (difference of phase shift of S_{21} from two cal. structures),
- 5) model of test fixture \rightarrow de-embedding component in ADS.

Characterization Setup

Two-port shunt structure:

Measurement procedure:

- 1) S-parameter of DUT measured up to P1 and P2,
- test fixture parasitics de-embedded from measured S-parameters,
- Z-parameters calculated from measured S-parameters,
- characterization setup represented by T-model (Z_3 to gnd),
- model of DUT extracted: $Z_{DUT} = Z_3 = (z_{12} + z_{21})/2$.

Outline

- Introduction
- 2 Measurement Procedure
- 3 Lumped-Element Model of the Current-Sense Resistor
- 4 Validation of the Mode
- Conclusion

Lumped-Element Model

Introduction

• Optimized in ADS to fit measured S-parameters

- R₁ DC resistance (not optimized),
- \bullet L_1 , R_2 - L_2 , R_3 - L_3 - skin effect.
- C_1 pad-pad cap.,
- C_2 pad-gnd cap.

$$R_1$$
, m Ω | L_1 , nH | R_2 , m Ω | L_2 , nH | R_3 , m Ω | L_3 , nH | C_1 , pF | C_2 , pF | 50.30 | 1.57 | 867.75 | 5.51 | 6472.70 | 12.92 | 15.51 | 2.76

Model vs. Measurements

Variation of parameter L_1

Introduction

 \bullet Impact of $\pm 10\%$ and $\pm 20\%$ variation on impedance of the model

- $L_1 \rightarrow \text{skin effect} \rightarrow \text{impact on real part at high freqs}$,
- impact of R_2 - L_2 and R_3 - L_3 networks is similar.

Outline

- Introduction
- 2 Measurement Procedure
- 3 Lumped-Element Model of the Current-Sense Resistor
- 4 Validation of the Model
- Conclusion

Validation Setup

Part of a DC-DC converter:

- V_{Rp} and V_{Rm} voltage across DUT (50- Ω probes),
- $R_{att,p}$ and $R_{att,m}$ prevent current flowing into probes,
- commercial current sensor large bandwidth,
- Z_{load} short at frequencies of interest.

Extracting the ripple current waveform (1 MHz):

- ullet $V_{meas,p}$ and $V_{meas,m} o ext{SPICE}$ (piecewise linear) $o ext{i}_L(t)$
 - nominal (pure 50-mΩ model)
 - extracted model
- large-bandwidth commercial current sensor

• recorded using Agilent MSO7034B oscilloscope (50- Ω channel imp.)

Extracting the current spectrum (using spectrum analyzer):

- nominal (50-m Ω) and extracted model, commercial sensor,
- extracted model, measured using R&K PH010 hybrid coupler.

Introduction

2) $f_{sw} = 3 \text{ MHz},$ $I_{L,p-p} = 5 \text{ A}$

Test cases:

Introduction

- 1) $f_{sw} = 1 \text{ MHz}$, $I_{L,p-p} = 5 \text{ A}$,
- 2) $f_{sw} = 3 \text{ MHz}$, $I_{L,p-p} = 5 \text{ A}$.
- Absolute difference [dB] in magnitudes of the current spectrum between commercial current sensor and:
 - nominal 50-mΩ model (nom.),
 - extracted model (extr.).

harmonic	1)		2)	
	nom.	extr.	nom.	extr.
f_{SW}	1.83	0.15	2.53	0.76
2nd	2.53	0.79	9.25	1.25
3rd	5.57	1.46	13.01	1.37
4th	7.46	1.82	15.46	2.54
5th	9.14	2.14	17.27	2.97

Outillie

- Introduction
- 2 Measurement Procedure
- 3 Lumped-Element Model of the Current-Sense Resistor
- 4 Validation of the Mode
- Conclusion

Conclusion

Introduction

- Shunt measurement method for low-impedance DUT
- Lumped-element model of current-sense resistor
 - frequency-independent elements,
 - ▶ valid up to 100 MHz,
 - impact of skin effect,
 - impact of variation of model parameters.
- Validation of the model
 - time domain ringing and overshoot modelled,
 - frequency domain advantage at higher freqs.
- Accurate extraction of the sensed current for large-current high-frequency applications

Introduction

Josip Bačmaga, M.Sc. University of Zagreb, Croatia Faculty of Electrical Engineering and Computing e-mail: josip.bacmaga@fer.hr